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Plan of the Talk

• Introduction. 
• Part 1: Graph-based parsing
• Part 2: Chunk grammars and MWE
• Part 3: Introducing a hybrid model
• Experimental setup
• Results
• Discussion
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Introduction

• A transformer-based architecture for dependency parsing is 
introduced

• It has been extended to accommodate some predefined shallow 
dependency information

• This information comes from two sources:
• lexicons (valency relations and MWEs)
• shallow grammars (non-recursive NPs and verbal complexes)
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Syntax in BERT layers

• Manning et al. (2020) Emergent linguistic structure in artificial 
neural networks trained by self-supervision

• They optimize a metric which models the edge classification as a 
distance between vectors task

• They show that there is a syntax tree representation hidden in the 
BERT embeddings from different layers
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• UAS - assigning the heads to each dependant
• scoring function on top of the encoder

• similar to attention
• produces probabilistic distribution over the possible heads of each dependant

• end-to-end fine-tuning
• a full graph is created over the tokens in the sentence with weights
• a Maximum Spanning Tree is selected as a syntactic tree

• Labeling after UAS
• classifier layer that classifies (dependant, head) -> label
• end-to-end fine-tuning

Part 1: Graph-based Parsing
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Example scoring output 

Ivan bought himself a black bag.

ROOT Иван си купи черна чанта .
Иван -inf -2.92 -3.60 10.67 -11.72 -3.01 -16.77
си -inf -6.68 -8.91 5.46 -13.26 -8.31 -20.97
купи 22.69 -0.41 2.28 6.14 -13.78 -6.55 -18.69
черна -inf -9.32 -11.54 -6.28 -9.36 9.08 -20.77
чанта -inf -5.27 -5.46 10.78 -7.01 -0.96 -14.99
. -inf -0.34 0.13 22.06 -9.87 3.69 -25.23
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• Scoring layer - dot product of word embeddings after separate linear 
projections
• hi= Model(wi) qi=QueryMatrix(hi) ki=KeyMatrix(hi)
• softmax(qiK) - distribution over the possible heads of i-th word

• Full weighted graph (matrix - token count X token count)
• QK

• Training with Cross Entropy Loss

• Inference with argmax (greedy) or MST

UAS in Depth
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Pre-trained encoders and Resources

• Pre-training Dataset - Literature, News articles, Webpages, 
Wikipedia and other sources. Size - 20B tokens

• Pre-trained models used in the experiments:
• BERT - base 109M
• BERT - large 334M

• Syntactic Language Resources for Bulgarian
• UD Bultreebank
• MWE - complex pronouns, prepositions, conjunctions, phraseology (in 

process of creation)
• Chunk grammars
• Valency lexicon of Bulgarian (not used in these experiments) 
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UAS (Basic Model)

• Using MST only leads to small improvement
• The greedy algorithm produces correct trees (no cycles) almost all the time 

99+%
• Decisions for the tree structure must have been made in the last layers of the 

fine-tuned encoder

• Next slide - Cosine similarity of word embeddings from different 
layers over an example sentence
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Part 2: MWE lexicon and chunk grammars

• Not all arcs need to be predicted
• The additional syntactic information is coming in form of arcs 

between tokens in the sentence (including root) with optional 
dependency labels

• Each arc between two tokens is used to help find the correct parse of 
the sentence
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MWE Representation in the Lexicon

• We assume that each MWE is represented as a syntactic subtree in 
the lexicon (see Osenova and Simov, 2024). We call such a kind of 
subtree catena

• Catena example: 

• The catena for a given MWE in the lexicon represents the 
information that is always presented in each realization 

• The information from the lexicon representation could be used as 
“sure” information during the parsing
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Representation of a Catena

• Each catena is a connected subtree of a dependency tree for a 
sentence

• The root of the subtree is mark up
• Each token contains information for the lemma, word form and 

morphosyntactic information
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Catena Realization
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Verbal MWE Lexical Entry

• The entry consists of:
• lexical catena, 
• semantic restriction;
• frames
• frames semantic contribution

• In the experiments we are using the 
arcs from the lexical catena
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Partial (Chunk) grammar

• During the creation of BulTreeBank project an extensive set of 
chunk grammars for Bulgarian were implemented

• Here is an example:
Rules:

NPns -> (An#|"Pd@@@sn), (Pneo-sn|Pfeo-sn)
PP   ->  R,N#

Analysis:
PP ->

R  -> С
NP ->

Ansd      -> голямото
Pfeo-sn  -> нещо                        With the big thing
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Part 3: Hybrid Model

• Not all head - dependent pairs need to be predicted

• First approach (Baseline): 
• the model predicts the weights,
• correct them based on the deterministic knowledge and
• then run MST

• Better approach:
• incorporate “sure” information in the layers,
• provide the deterministic knowledge to the model before it makes the 

predictions,
• fine-tuning together with “sure” information
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Prompt Attention

• Introducing a new sublayer in the encoder 

• Adds the transformed vector of the 
predefined head to the vectors of the 
dependant

• Tries to tap into the presumed syntax tree 
representation hidden in the encoder layers
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Prompt Attention

• Linear projection of the head
• Prompt(x)

• Added to the dependant embeddings

• Modifying only the last few layers
• Many modified layers leads to too many new parameters
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Training and testing setup

• Training with random set of predefined arcs leads to better 
generalization (as opposed to training with Chunk grammars and 
MWE lexicon predefined arcs)

• more control over the ratio of the predefined arcs - too much or too little 
lead to worse performance

• more diverse types of arcs

• Testing with Chunk grammars and MWE lexicon predefined arcs
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Experiments and testing setup

• We compare to the MST model which incorporate prompts into the 
encoder but after inference is corrected with the deterministic 
knowledge

• The prompted model uses the prompts successfully and manages to 
generalize over them
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Results for Bulgarian

TP(udti) - a subset of the treebank udti; TP(udti)J - a subset of the 
treebank with J amount of predefined arcs; TP(udti)ChMWE - a subset of 
the treebank with arcs from Chunk Grammars or MWE added to it; 
TP(udti)20 - a subset with 20% randomly selected arcs as predefined; 
TP(udti)0 - the treebank subsets without any predefined arcs.
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Improvements in UAS (LAS)
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UAS LAS

BERT Parser 96.15% 93.37%

BERT Parser + MWE and CG 96.40% 93.61%

Prompted BERT Parser with MWE and GGs 96.72% 93.92%



Prompting Works for English

• google bert large uncased - same number of non-embedding params
• gum tree bank - similar size tree bank
• no available chunk grammar and MWE lexicon so choosing random 

edges as a proof of concept
• prompted model is still better than baseline 
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Manual Evaluation

• The baseline makes errors
• wrong head direction (the subject of a copula depends on the coppola instead of the content word)
• wrong head selection (NN construction with the first noun indicating quantity, the head is the first 

noun, but the model selected the second one)
• wrong head assignment (the subject should be related to the main verb of a sentence but it was 

assigned to the modal verb instead)
• wrong root assignment (in complex sentences, the baseline assigns the root relation to both verbs)
• wrong PP attachment (instead of depending on the noun, the head of the PP is made dependant on 

the verb)
• The best model makes errors

• wrong head direction (similar)
• wrong head assignment (similar)
• wrong PP attachment (similar)
• wrong non-PP attachment (the adverb is adjacent to the preceding noun but has to be attached to 

the following verb, but it was wrongly attached to the noun)
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Conclusions from Manual Evaluation

• The best is not monotonically better than the baseline model
• Addressing this problem we plan to:

• improve the prompt attention layer by including more linguistic information 
such as higher order arc information, grammatical features, shallow semantic 
information;

• extent the treebank with new sentences selected using some active learning 
procedure;

• improve the shallow grammar and the coverage of the MWE lexicon as well 
as the related algorithms for their better prediction and consequent 
recognition in text
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Conclusion and Discussion

• The paper introduced a Hybrid Parsing model which incorporates 
deterministic information in the probabilistic model

• The model benefits even when it is used without the deterministic 
information

• The findings for Bulgarian remain consistent in English
• In future we plan to do experiments with models in which more 

linguistic information will be added
• Many of the errors identified by the manual investigation are 

related to rare phenomena in text, thus we need to extend the 
treebank 
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