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Specifics of literary texts

Examples from Uncle Tom’s Cabin

• “They an't pop'lar, and they an't common; but I stuck to "em, sir; I've
stuck to "em, and realized well on "em […]”

• In fact, if not exactly a believer in the doctrine of the efficiency of
the extra good works of saints, he really seemed somehow or other to
fancy that his wife had piety and benevolence enough for two to
indulge a shadowy expectation of getting into heaven through her
superabundance of qualities to which he made no particular
pretension.

• Poeticity
• Rich vocabulary
• Large set of syntactic

constructions

• Variable domains
• Long sentences
(van Cranenburgh & Bod 
2017) 

Neural MT versus statistical MT 

NMT
• Fewer lexical,

morphological
and reordering
errors

• More fluent
output

• Better handling
of rare words

SMT
• Better

performance on
longer
sentences

• Copes better
with small
amount of
training data

In-domain

• Bilingual Formal/Informal Address
Corpus (Faruqui&Pado, 2012)

• Books corpus  (Tiedemann, 2012)
  114 texts  
(English vocabulary size 117492,  
German vocabulary size: 222089) 
Mainly originally English (55) and 
French (34), some German texts 
(16)

• Corpus of German Language Fiction
(Fischer& Strötgen, 2017)
30 texts (Vocabulary size: 115312)

Out-of-domain

Compare: Bentivogli et al. (2016), Toral & Sánchez-Cartagena (2017),
Koehn, P. & Knowles, R. (2017) 
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Neural Machine Translation newly 
proposed in 2014, improved over state 
of the art statistical methods

Automatic Comparison

Translation Error rate (TER), a low score is desirable. 
Measures the amount of steps needed for post-
processing.

Manual error analysis and score

BLEU score, a high score is desirable. Matches ngrams 
from output to the reference output.

Manual scores, 0: No connection to sources sentence. 
1: Not understandable, 2: Information can be gathered, 
3: Sentence clearly is translation of source, 4: Only few 
mistakes, 5: No errors.

Training Data for NMT 

• Size of training data: Need bigger corpus of in-domain data,
best would be direct translations and lower domain variability.

• Alignment: Need fully reviewed alignments, reason for very low
scores often due to misalignment. One-to-one alignment would
be optimal. Automatic scoring metrics would be more reliable.

• Annotation: Edinburgh NMT system allows for POS-tagged input,
the problem of unknown words in the output could be reduced
as many are proper nouns.
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Manual analysis is based on Popović et al. (2013). 
Lexical choice: Wrong translation
Lexical errors: Omitted/ repeated word 

Summary
All systems perform equally poorly.
The SMT systems produce more syntactical and more severe 
morphological errors. The NMT systems cannot produce better word 
choice, probably due to small amount of (in-domain) training data.

Original Accordingly, on entering the room, we found him present, in the 
uniform of an officer of his rank, about to commence a march in the forests 
of America. 
NMT Als er in die Zimmer trat, fanden wir ihn, in der Uniform eines Offiziers 
seines UNK zes, einen Marsch in den Wäldern Amerikas zu beginnen.
SMT gleich beim Eintritt in das Zimmer , wo wir ihn gefunden , in der 
Uniform eines Offiziers seines Ranges , im Begriff , anzufangen , einen 
Marsch in die Wälder von Amerika .




